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Abstract

Let G be a graph with vertex set V (G) and edge set E(G). A (defen-
sive) alliance in G is a subset S of V (G) such that for every vertex
v ∈ S, |N [v] ∩ S| ≥ |N(v) ∩ (V (G) − S)|. The alliance partition
number of a graph G, ψa(G), is defined to be the maximum num-
ber of sets in a partition of V (G) such that each set is a (defensive)
alliance. In this paper, we give both general bounds and exact re-
sults for the alliance partition number of graphs, and in particular
for regular graphs and trees.
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1 Introduction and motivation

Defensive and offensive alliances were introduced by Kristiansen, Hedet-
niemi, and Hedetniemi in [9] and [10], and numerous variants of this prob-
lem have been studied by others. The definitions were motivated by the
study of alliances between different people, between different countries, and
between species of plants in botany. In a graph G, a nonempty set of ver-
tices S is a (defensive) alliance if for every vertex v ∈ S, |N [v] ∩ S| ≥
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|N(v) ∩ (V (G) − S)|. Then every vertex in S is an ally of v and every
vertex not in S is a (potential) enemy of v, in particular, vertices not in S
adjacent to v are the enemies of v. This says that v is adjacent to at least as
many allies as enemies, where v itself is counted as an ally. A (defensive) al-
liance S is strong if, for every v ∈ S, |N [v]∩S| > |N(v)∩(V (G)−S)| (strict
inequality). In this paper, we will often call a defensive alliance simply an
alliance. Algorithmic complexity of alliances in graphs was first studied in
[11] with more studies of complexity of different variants of alliances. For
other graph theory terminology the reader should refer to [2].

The alliance partition number of G, ψa(G), is defined to be the maxi-
mum number of sets in a partition of V (G) such that each set is an alliance.
The alliance partition number was a topic introduced in [9].

Similar concepts have been studied in which the vertex set has been
partitioned into exactly two sets, each of which is some type of alliance. In
[3], [4], and [5], R. D. Dutton and H. S. Khurram defined an alliance-free
partition to be a partition of the vertex set into two nonempty sets if neither
one of the two sets contains a strong defensive alliance as a subset. Also,
they defined an alliance cover set to be a subset of the vertices of a graph
that contains at least one vertex from every alliance of the graph. It turns
out that the complement of an alliance cover set is an alliance free set, that
is, a set that does not contain any alliance as a subset. They characterize
the graphs that can be partitioned into alliance free and alliance cover
sets. Gerber and Kobler in [6] introduced the satisfactory partition problem,
which, restated in our notation, involves determining whether a particular
graph has a partition into two strong defensive alliances. In [8], this idea
was generalized to the k- Satisfactory Graph Partitioning problem (k-SGP),
which consists in determining if a graph is k-satisfiable or not, i.e., whether a
given graph can be partitioned into two k-defensive alliances. An alliance A
is k-defensive, if for each vertex v ∈ A, we have that degA(v) ≥ degV−A v+
k, where k is an integer. Note that if k = 0, then the problem reduces
to finding which graphs have a partition of the vertex set into exactly two
alliances. A graph G is 0-satisfiable if and only if ψa(G) ≥ 2, so the alliance
partition number could be viewed as a generalization of 0-satisfiability. In
a similar fashion the unfriendly graph partition problem was introduced by
Aharoni et al. [1], where the vertex set is partitioned into two sets such
that each vertex has most of its neighbors in the complement of the set it
belongs to.

In this paper we study the elementary properties of alliance partition
number by presenting both general bounds in terms of minimum degree,
order and diameter, and also exact results for the alliance partition number
in graphs. We recently learned that T. W. Haynes and J. A. Lachniet [7]
have independently worked on this topic, and we refer to their future papers
for the study of the alliance partition number in classes of graphs.
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2 Preliminary Results and Observations

We will start by showing an example of the alliance partition number in
graphs.

Let P be the Petersen graph of order n = 10. We will be using labels
on the vertices to denote the alliance that the particular vertex belongs to.
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Figure 1: ap(P ) = 5

Observe that no vertex can form an alliance by itself since its degree
is 3. Thus, at least two vertices must be in each alliance, giving us that
ψa(P ) ≤ n

2 = 5. Also, the above labeling shows that there is an alliance
partition with 5 alliances, and so ψa(P ) = 5.

We consider disconnected graphs, so that we can concentrate on con-
nected graphs for the rest of the paper. We present the relationship between
the alliance partition number of a disconnected graph and its components.
First, observe that each alliance is only contained in a particular compo-
nent of G, and the alliances in one component form an alliance partition of
that component.

Proposition 2.1 Let G be a disconnected graph whose components are
G1, G2, . . . , Gr (r ≥ 1). Then

ψa(G) =
∑

1≤i≤r

ψa(Gi).

We also present bounds and their sharpness for disconnected graphs.
Since V (G) defines an alliance for any graph G, and since it is possible for
each vertex of the graph to form an alliance by itself (if its degree is 0 or
1), we have the following result.

Proposition 2.2 Let G be a disconnected graph of order n ≥ 3. Then

1 ≤ ψa(G) ≤ n.
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To see the sharpness, note that ψa(K2`+1) = 1 and ψa(Kn) = n, for `, n
positive integers.

Since ψa(G) = n if and only if each vertex forms an alliance by itself
(i.e. each vertex can have at most one enemy), we obtain a characterization
of graphs that attain the upper bound of the alliance partition number for
disconnected graphs.

Proposition 2.3 Let G be a connected graph of order n. Then ψa(G) = n
if and only if G = kK1 + `K2, for k and ` nonnegative integers.

One may observe that most graphs of even order will have an alliance
partition number of 2 or larger, since it is possible to divide the vertex
set into 2 equal alliances (for example K2n for some positive integer n).
However, this is not always the case as we present next. We will use this
result in the proof of Proposition 2.5.

Lemma 2.4 There are classes of graphs G of even order such that ψa(G) =
1.

Proof. Let G be the graph of order 2t ≥ 8 obtained from the complete
graph K2t−1 : v1, v2, . . . , v2t−1, by adding a vertex v together with the edges
vvi (1 ≤ i ≤ t− 2), for t ≥ 4. We present below the graph for t = 4.
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Figure 2: The graph G for t = 4

We now show that G has ψa(G) = 1. Assume there are at least two
alliances in G, and let v belong to the alliance A. Since deg v ≥ 2, v must
belong to the same alliance as vi, for some i (1 ≤ i ≤ t−2). Since for each i
(1 ≤ i ≤ t−2) we have that deg vi = 2t−1, it follows that |A| ≥ ⌈

2t−1
2

⌉
= t.

Suppose |A| = t. Since deg v ≤ t − 2, it follows that there is at least one
vertex vj ∈ A (t− 1 ≤ j ≤ 2t− 1) such that vvj /∈ E(G). Thus vj has only
t− 1 allies (including itself), and t enemies, which is a contradiction. Thus
A must include at least t+1 vertices. However then, V (G)−A has at most
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t − 1 vertices with at most t − 1 allies and at least t enemies, which is a
contradiction. Thus G has only one alliance. 2

In the proof above, G has order at least 8. By inspection, one can find
that there is no graph of order 2 or 4 with ψa(G) = 1. There are graphs
of order 6 with ψa(G) = 1, such as K5 with one edge subdivided by a new
vertex.

Proposition 2.5 Let G be a graph of order n ≥ 1. Then all pairs (k, n)
(1 ≤ k ≤ n) except for (1, 2) and (1, 4) can be realized as the alliance
partition number and order of some graph.

Proof. If k = 1 and n is odd, let G be Kn. If k = 1 and n is even,
n ≥ 6, let G be the graph of Lemma 2.4. If k = 2 and n is even, let G
be Kn. If k = 2 and n is odd, let G be Kn−1 with a new vertex joined to
exactly half of the n− 1 vertices. We may assume k ≥ 3. If k and n are of
opposite parity let G = Kn−k ∪ P3 ∪ (k − 3)K1, for 3 ≤ k ≤ n − 1. Then
ψa(Kn−k) = 1, ψa(P3) = 2, and ψa((k − 3)K1) = k − 3. By Proposition
2.1, ψa(G) = 1 + 2 + (k − 3) = k. If k and n are of the same parity let
G = Kn−k+1 ∪ (k − 1)K1, for 1 ≤ k ≤ n. Then ψa(Kn−k+1) = 1, and
ψa((k − 1)K1) = k − 1. By Proposition 2.1, ψa(G) = 1 + (k − 1) = k. 2

3 Alliance Partition Number in Connected
Graphs

We next present sharp bounds for the alliance partition number for con-
nected graphs.

Theorem 3.1 Let G be a connected graph of order n ≥ 3. Then

1 ≤ ψa(G) ≤
⌊
n +

3
2
−
√

1 + 4n

2

⌋
.

The bounds are sharp.

Proof. Suppose G is a connected graph of order n and ψa(G) = r. Let
A1, A2, . . . , Ar be a partition of V (G) into r defensive alliances. Define the
degree of each alliance deg(Ai) = |{uv ∈ E(G)|u ∈ Ai, v /∈ Ai}|. Since G
is connected,

∑r
i=1 deg(Ai) = 2 · |{uv ∈ E(G)|u ∈ Ai, v ∈ Aj , where i 6=

j}| ≥ 2(r − 1). For arbitrary i, |Ai| = t and deg(Ai) = s. Then some
vertex v ∈ Ai has at least

⌈
s
t

⌉
enemies and at most t allies, counting itself.

Hence, t ≥ s
t , and so t2 ≥ s. Thus, for each i, |Ai|2 ≥ deg(Ai), also∑r

i=1 |Ai|2 ≥
∑r

i=1 deg(Ai) ≥ 2r − 2, with n =
∑r

i=1 |Ai|, and |Ai| ≥ 1 for
all i, 1 ≤ i ≤ r.
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For simplicity, let ai = |Ai| for 1 ≤ i ≤ r. It can be shown that the
minimum value for n = a1 + a2 + . . . + ar under the conditions ai ≥ 1 for
1 ≤ i ≤ r and a2

1 +a2
2 + . . .+a2

r ≥ 2r−2 occurs at a1 = a2 = . . . = ar−1 = 1
and ar =

√
2r − 2− (r − 1) =

√
r − 1. Thus, n ≥ r − 1 +

√
r − 1, which

simplifies to r ≤ n + 3
2 −

√
1+4n
2 .

To see that the bounds are sharp, consider K2`+1 for the lower bound.
For the upper bound, let G be the graph obtained from Kt by attaching t
pendants to each vertex of Kt.
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Figure 3: The graph G for t = 4

Then n = |V (G)| = t(t+1) and ψa(G) = t2 +1 (where the alliances are
indicated by the vertex labels), which verifies the bound. 2

For the lower bound, we find relations between the size of G and the
alliance partition number.

Proposition 3.2 Let G be a graph with 2t + 1 vertices and at least
(
2t+1

2

)
−(t− 1) edges (t ≥ 1). Then ψa(G) = 1.

Proof. Assume, to the contrary, that there is a graph G with 2t + 1
vertices, at least

(
2t+1

2

) −(t− 1) edges, and ψa(G) ≥ 2. Then V (G) can be
partitioned into i sets Ai (i ≥ 2), so that each Ai is an alliance.

Since the size of G is at least
(
2t+1

2

) −(t − 1), there is some vertex
v ∈ V (G) such that deg v = 2t. Let v belong to the alliance A. Then
|A| ≥ t + 1. Then V (G) − A is an alliance or a union of alliances, with
|V (G)−A| = s ≤ t.

Let u ∈ V (G) − A. Then u has at most s ≤ t allies (including itself),
so u can have at most s enemies. Thus u is adjacent to at most s of the
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2t + 1− s vertices in A. So there are at least 2t + 1− 2s ≥ 1 vertices in A
not adjacent to u. Since this is true for each u ∈ V (G) − A, there are at
least s(2t + 1− 2s) potential edges not present for some s with 1 ≤ s ≤ t.

We next claim that there are at least t potential edges not in G, i.e.
|E(G)| ≤ (

2t+1
2

) −t. The critical points of f(s) = s(2t + 1 − 2s) are s =
1
4 (2t+1), and the endpoints s = 1 and s = t. Now, for t ≥ 1, the minimum
value occurs when s = t. Thus |E(G)| ≤ (

2t+1
2

) −t. This contradicts the
fact that G has at least

(
2t+1

2

) −(t− 1) edges. 2

The next two upper bounds involve the minimum degree and the girth.

Theorem 3.3 Let G be a graph with minimum degree δ. Then

ψa(G) ≤
⌊

n

d δ+1
2 e

⌋
.

Proof. Since δ is the minimum degree in G, it follows that every ver-
tex must have at least d δ+1

2 e allies, including itself. Therefore, ψa(G) ≤⌊
n

d δ+1
2 e

⌋
. To see the sharpness, consider Cn (n ≥ 3). 2

Proposition 3.4 Let G be a graph with girth g ≥ 3 and minimum degree
δ(G) ≥ 4. Then ψa(G) ≤ bn

g c.

Proof. Let A be a defensive alliance in G. Any vertex v ∈ A has at least 4
neighbors and hence at least 2 neighbors in A. Thus, the subgraph induced
by A has minimum degree at least 2, and so it cannot be a tree; it must
contain a cycle. Since G has girth g, it follows that |A| ≥ g. Since every
alliance of G has order at least g, ψa(G) ≤ bn

g c. In the case that g = 3, one
can observe that Cn × C3 gives sharpness of the bound. 2

Notice that the result does not hold if δ(G) ≤ 3. For instance, if P
is the Petersen graph, then δ(P ) = 3, g(P ) = 5, and ψa(P ) = 5 >

⌊
10
5

⌋
,

contradiction.

4 Alliance Partition Number in Regular Graphs

As a consequence of Theorem 3.3, we have the following corollary.

Corollary 4.1 If G is r-regular, then

ψa(G) ≤
⌊

n

d r+1
2 e

⌋
.
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The bound is sharp for Cn. If r = 2, then Cn is the only 2-regular graph

(n ≥ 3) and ψa(C) =
⌊

n
2

⌋
. We now consider r ≥ 3.

Theorem 4.2 Let G be a connected 3-regular graph. If M is a maximum
matching, then ψa(G) = |M |.
Proof. Let G be a 3-regular graph with a maximum matching M of size
|M | = k. Since the two end vertices of each edge of a maximum matching
form an alliance, and each of the leftover vertices can merge with one of the
neighboring alliances already formed, we have that ψa(G) ≥ |M |. Assume
that ψa(G) > |M | = k, with the alliance partition {A1, A2, . . . , Aψa(G)}.
Then there are at least k + 1 alliances. Since G is 3-regular, it follows that
no vertex can form an alliance by itself. Thus |Ai| ≥ 2, ∀i and each graph
〈Ai〉 induced by Ai contains at least one edge, and so there is a matching
of size ψa(G) > k, contradiction. The result is sharp for Cn ×K2 (n ≥ 3).
2

We next consider the n-regular hypercube Qn.
Observation For n ≥ 1, ψa(Qn) ≥ 2dn

2 e.
To see this, represent the vertices of Qn by bit strings of length n, so

that two bit strings are adjacent if and only if they differ in exactly one bit.
We can define 2dn

2 e vertex sets A1, A2, . . . , A
2dn

2 e as follows. Let Ai be the

set of vertices for which the first
⌈

n
2

⌉
bits are the integer i − 1 written in

binary. (Thus, A1 is the set of bit strings that begin with
⌈

n
2

⌉
zeros, A2 is

the set of bit strings that begin with
⌈

n
2

⌉−1 zeros followed by a 1, etc.) We
claim that each Ai is an alliance. Let v ∈ Ai. Then v has n − ⌈

n
2

⌉
=

⌊
n
2

⌋
neighbors in Ai, each formed by changing one of the last

⌊
n
2

⌋
bits in v.

Since deg(v) = n, v is defended.
Moreover, we conjecture the following.

Conjecture 4.3 For any integer n ≥ 1, ψa(Qn) = 2dn
2 e.

Theorem 4.4 Let G be an r-regular graph with girth g, where r ≥ 3 and
g ≥ 5. Then every alliance in G has at least 1 + (g − 2) · ⌈ r−3

2

⌉
vertices.

Proof. The bound is trivial for r = 3, so we assume that r ≥ 4. For any
alliance A and any vertex v ∈ A, v must have at least two neighbors in
A. Thus, the graph induced by A has minimum degree at least 2, and so
it must contain a cycle of length at least g. Let u1, u2, . . . , ug−1 be g − 1
consecutive vertices on this cycle. Each ui has r − 2 neighbors besides
ui−1 and ui+1 and at least

⌈
r−5
2

⌉
of them must be in A. The only pair of

vertices in u1, u2, . . . , ug−1 which could have common neighbors (other than
the common neighbors on the path u1, u2, . . . , ug−1) are u1 and ug−1. Thus,
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there are at least (g− 2)
(⌈

r−5
2

⌉)
vertices in A besides u1, u2, . . . , ug−1, for

a total of at least g − 1 + (g − 2)
(⌈

r−5
2

⌉)
= (g − 2)

(⌈
r−3
2

⌉)
+ 1 vertices in

A. 2

Corollary 4.5 Let G be an r-regular graph of order n with girth g, where
r ≥ 3 and g ≥ 5. Then

ψa(G) ≤ n

1 + (g − 2) · ⌈ r−3
2

⌉ .

5 Alliance Partition Number in Trees

We next find sharp bounds for the alliance partition number for trees in
terms of its diameter first.

Theorem 5.1 Let T be a tree of order n ≥ 3 and diameter d ≥ 2. Then

ψa(G) ≥
⌈

d

2

⌉
+ 1.

The bound is sharp.

Proof. Let the path Pd+1 : u1, u2, . . . , ud+1 be a path of maximum length
in T , where diam(T ) = d. Note that the vertices u1 and ud+1 form alliances
by themselves. Also, since deg(vi) ≥ 2, for all i (2 ≤ i ≤ d), it follows that
each of these vertices need at least one ally, so each alliance containing vi

has order at least 2. Thus we have at least dd−2
2 e+2 alliances, namely Ai ={

u2i, u2i+1 : 1 ≤ i ≤
⌈

d−2
2

⌉}
, A = {u1}, B = {ud}. Note that leftover

vertices can be grouped with their parent vertex on the diameter. For
the sharpness of the lower bound, consider the path P2k for some positive
integer k. 2

For the sharpness of the next bound, we will need a definition. Recall
that for a connected graph G, the Corona of G is Cor(G), obtained by
adding an end vertex to each vertex of G. We then have the following.
Then a graph G is a corona graph if each vertex of G is a leaf or a stem
adjacent to exactly one leaf. We now find sharp bounds for the alliance
partition number in a tree in terms of its order.

Theorem 5.2 Let T be a tree of order n ≥ 3. Then

ψa(T ) ≤
⌊

3n

4
+

1
2

⌋
.

The bound is sharp.
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Proof. Suppose V (T ) is partitioned into a maximum number of alliances
A1, A2, . . . , Ar. Let v ∈ Ai, for some i (1 ≤ i ≤ r). Then at least⌈

1
2 (deg v − 1)

⌉
of the neighbors of v must be in the same alliance Ai and

hence < Ai > contains at least
⌈

1
2 (deg v − 1)

⌉
edges incident with v. Notice

that the subgraph induced by each alliance is a tree, and so the number of
edges in each alliance equals the number of vertices minus one, that is, |Ai|−
1 ≥ ⌈

1
2

∑
v∈Ai

⌈
1
2 (deg(v)− 1)

⌉⌉ ≥ ⌈
1
4

∑
v∈Ai

(deg v − 1)
⌉
. We will count

one vertex from each alliance in order to count the number of alliances.
There are n vertices total, and we subtract all except one vertex from each
alliance. Hence, the total number of alliances is r = n − ∑r

i=1(|Ai| −
1) ≤ n − ∑

Ai

⌈
1
4

∑
v∈Ai

(deg v − 1)
⌉ ≤ n −

⌈
1
4

∑
v∈V (G)(deg v − 1)

⌉
=⌊

n− 1
4

∑
v∈V (G) deg v + n

4

⌋
=

⌊
5n
4 − m

2

⌋
=

⌊
3n
4 + 1

2

⌋
. For the sharpness,

observe that ψa(Cor(P2k)) = 3k = 3n
4 =

⌊
3n
4 + 1

2

⌋
. 2

Recall that a binary tree is a tree of maximum degree 3. For binary trees
we present sharp lower bounds for the alliance partition number in terms
of order and the size of a maximum matching. We let 〈e〉 be the subgraph
induced by the edge e.

Proposition 5.3 Let T be a binary tree with a maximum matching M .
Then ψa(T ) ≥ n− |M |. The bound is sharp.

Proof. Let M = {e1, e2, . . . , eβ′} be a maximum matching in T of size β′.
Note that G− 〈{e1, e2, . . . , eβ′}〉 consists of isolated vertices (otherwise M
is not maximum). If some vertex in G − 〈{e1, e2, . . . , eβ′}〉 is not an end-
vertex in G, then there is a matching M ′ = {e′1, e′2, . . . , e′β′} that overlaps
part of M , such that G − 〈{e′1, e′2, . . . , e′β′}〉 is a union of isolated vertices
which are all end-vertices in G.

Since ∆(T ) = 3, it follows that the size of any alliance is either 1 or
2, where each vertex needs at most one ally other than itself. Define an
alliance partition of T , where alliance Ai consists of the two end-vertices
of edge ei (or e′i if M ′ is used) (1 ≤ i ≤ β′), and each Aj consists of an
isolated vertex (1 ≤ j ≤ n−|M |). The result follows. To see the sharpness,
consider the path P2k+1 : v1, v2, . . . , v2k+1 (for natural number k). Then
the alliance partition A1 = {v1} and Ai+1 = {v2i, v2i+1} (1 ≤ i ≤ k)} is a
maximum one, giving the sharpness. 2

As one can see, finding the alliance partition number in graphs is not
trivial. Thus an open problem on the topic is to find the computational
complexity of alliance partition number in graphs.
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